
On-Demand WebRTC Tunneling in Restricted Networks

Thomas Sandholm, Boris Magnusson, Björn A. Johnsson

Department of Computer Science, Lund University, Sweden
{thomass,boris.magnusson,bjorn_a.johnsson}@cs.lth.se

ABSTRACT
In this paper we present the implementation of a WebRTC
gateway service that can forward ad-hoc RTP data plane
traffic from a browser on one local network to a browser
on another local network. The advantage compared to the
existing IETF STUN (RFC 5389), TURN (RFC 5766) and
ICE (RFC 5245) protocols is that it does not require a pub-
lic host and port mapping for each participating local host,
and it works with more restrictive firewall policies. WebRTC
implements ICE which combines STUN and TURN probes
to automatically find the best connection between two peers
who want to communicate. In corporate networks, simple
hole punching and NAT traversal techniques typically do not
work, e.g. because of symmetric NATs. Dynamic allocation
of ports on an external 3rd party relay service is also typ-
ically blocked on restricted hosts. In our use case, doctors
at hospitals can only access port 80 through the hospital
firewall on external machines, and they need to communi-
cate with patients who are typically behind a NAT in a local
WiFi network. VPN solutions only work for staff but not
between patients and staff. Our solution solves this prob-
lem by redirecting all WebRTC traffic through a gateway
service on the local network that has a secure tunnel estab-
lished with a public gateway. The public gateway redirects
traffic from multiple concurrent streams securely between lo-
cal gateway services that connect to it. The local gateways
also communicate with browsers on their local network to
mimic a direct browser-to-browser connection without hav-
ing to change the browser runtime. We have demonstrated
that this technique works well within the hospital network
and arbitrary patient networks, without the need for any in-
dividual host configuration. In our evaluation we show that
the latency overhead is 18-20 ms for each concurrent stream
added to the same gateway service, which is not discernible
with a naked eye until you have more than 10 concurrent
streams.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
Audio and video conferencing services have long been the
ultimate communication tool between remote participants
connected to the Internet. Innovation has, however, been
curbed by a plethora of incompatible, proprietary protocols
and tools controlled by a few companies. Custom solutions
have been very costly and complex to implement. At the
same time the Web has evolved from being a simple on-line
newspaper to become a full-fledged operating system.

With WebRTC [4] this operating system is now also capable
of running standards-based audio and video conferencing ap-
plications. The same flood of innovation that we have grown
used to with the Social Web is now finally also available to
audio and video streaming applications. However, the up-
take of the technology is restricted by the assumption of a
direct peer-to-peer connection between participating parties.
In particular in corporate networks this is a big issue, and
has been an issue for traditional applications such as Skype
too. The difference here is that at least the control plane
of the streaming applications can get through the firewall
as standard port 80 Web traffic. The remaining problem
is how to route the data plane, i.e. the RTP and RTCP
(IETF RFC 4571 [12] and 3711 [3]) packets. WebRTC man-
dates that these packets should go through a single port
which helps to some extent, but there is still an issue of
traversing NATs and Firewalls. The WebRTC solution to
this problem is ICE RFC 5245 [15] (Interactive Connectiv-
ity Establishment). It is a bundle of a number of techniques
including STUN [16] (Session Traversal Utilities for NAT)
and TURN [14] (Traversal Using Relay NAT) to find IP ad-
dress and port pairs that can communicate directly. STUN
techniques are typically blocked because internal hosts are
simply not reachable on routable IP addresses. TURN on
the other hand assumes that you can dynamically allocate
ports freely on external networks that can relay the traffic.
This means that you would need to add a firewall exception
for each stream, which is complicated by the fact that these
ports are dynamically allocated and can be shared among
many users over time. For many corporate and hospital net-
works there is a very limited range of outbound ports that
may be allocated, in the most restrictive case only port 80
is allowed.

Our solution to this problem is to leverage a two-hop, se-
cure tunnel pipeline between two arbitrary networks that
channels all RTP and RTCP traffic between these networks,
while only requiring port allocations on each local network.



To accomplish this we implement a gateway service that sup-
ports the ICE and STUN protocols to mimic a Web browser
peer. No modifications were necessary to the browser source
code 1. We only need to intercept WebRTC signalling mes-
sages during connection establishment. These signalling mes-
sages must be intercepted in any case, since WebRTC does
not define a standard channel for relaying these messages,
although a web socket service is commonly used. We need
to extract the credentials for the session from SDP [10] (Ses-
sion Description Protocol) offers and answers as well as the
ICE candidate IP address and port that the peers want to
receive traffic on. Then we allocate sessions on-demand and
open up UDP ports on local gateways with lease-based tun-
nels through a central gateway. These local gateways do not
need any configuration except for pointing to the right cen-
tral gateway, and only one local gateway needs to run for
each local network where you want to run WebRTC browser
clients. Similarly, the browser client needs to point to the
GUID of the local gateway. Except for those configurations,
the session setup and tear-down is fully automatic.

We evaluated the approach by deploying it in a real hospital
network to tunnel traffic to different clients behind NATs.
The measured overhead in our experiment is less than 20ms.

This work was done as part of a project to provide IT-based
support for home-care treatment of cancer patients [11] in
Southern Sweden.

Our contributions in this paper include:

• the design and implementation of a gateway service
capable of tunneling SRTP media traffic compatible
with ICE and WebRTC; and

• a set of experiments to measure the latency, session
setup overhead, and multi-stream scalability of our so-
lution.

The rest of this paper is organized as follows. In Section 2
we present related work. Section 3 discusses the require-
ments on our work from the home-care project. In Section 4
we give an overview of WebRTC and in Section 5 we pro-
vide some background information on a pervasive computing
middleware toolkit, called Palcom, that is leveraged in our
work. Then in Section 6 we present the design of our gate-
way. Our solution is evaluated in Section 7, and then we
conclude in Section 8.

2. RELATED WORK
In [21] the general problem of sending WebRTC UDP traf-
fic across corporate firewalls is discussed and why current
TURN and STUN solutions do no help. Their tunneling so-
lution does not solve the port allocation problem, and does
not allow load balancing traffic across gateways on the local
network. All traffic also goes through their central server,
whereas our solution allows distributed central gateways as
well.

1the WebRTC runtime used in the Google Chrome browser
that we tested with is open source, and thus any component
embedding this runtime should work well with our solution

Loreto et al. [13] discuss how multiple media streams can
be sent through the same port for the same session with
WebRTC today to avoid“opening a new hole for each stream
used”. However, this solution does not allow you to send
multiple streams from different sessions through the same
port.

Rodriguez et al. [1] proposed a Multipoint Control Unit
(MCU) architecture for WebRTC to provide additional ser-
vices such as multi-party conferences, gatewaying between
protocols and call recording. They, however, do not address
the specific challenges of firewall traversal in restricted net-
works.

The SIP community has been heavily involved in the de-
velopment of WebRTC and thus the current standard al-
lows for seamless tunneling between SIP gateways and We-
bRTC browsers as described in [2]. Architecturally, the SIP
gateway solution is similar, but servers such as Meetecho
RTCWebLite [2] focus more on protocol and signalling plane
conversions rather than the firewall traversal problem that
we address.

Predating WebRTC, a large number of firewall traversal so-
lutions have been evaluated for relaying SIP-based audio and
video sessions through Enterprise networks in [18, 6, 7]. The
techniques studied include STUN, UPnP, MIDCOM, Sen,
FANTOM, STEM, PSTN Gateway, SIP Proxy, Application
Level Gateway, DMZ MCU, and Semi-Tunnels/Transparent
Traversal. The last technique in the list 2 [7], is similar archi-
tecturally to our approach in that a local network client re-
lays multiple sessions through a public network server. The
motivation in that case was to avoid having to change legacy
firewall deployments, while we also have this goal our main
motivation for this architecture is to avoid having to change
the browser source code.

Our solution differs from all of these pre-WebRTC solu-
tions as they do not leverage a signalling plane (in our case
WebRTC JSEP) that trivially traverses firewalls via port
80/443. Furthermore our solution only requires a standard
browser to be run on a participating client machine.

3. HOME CARE REQUIREMENTS
The work in this paper is motivated by the requirements
from a project in applied research involving the University
hospital in Lund, Lund University and 6 companies [11].
The aim is to develop IT-support for the situation where
patients are enrolled at the hospital, but given advanced
care at home. This is a form of care that is growing rapidly,
in particular for chronically ill patients, and seen as a benefit
both for patients and the hospital, as long as the patients feel
safe in this situation. It does, however, demand new kinds
of support systems. Medical equipment at home needs to
be remotely monitored (and controlled) from the hospital in
order to avoid frequent technically-motivated visits to the
home. The mobile staff needs new facilities for handling
the information flow in order to avoid doing the same task
twice (notes on paper later entered into a computer system),
having updated information at hand, and work efficiently in

2implemented in a product called IPFreedom by Ridgeway
Systems



general. Communication over a variety of media, including
video, between patient and staff is believed to be crucial for
many patients to feel safe in this situation. Existing video
communication systems, such as Skype and Lync, are not
applicable in this situation due to security concerns,such as

• access to the patient on video needs to be restricted,

• management overhead,

• separate registration of patients addresses,

• and lack of integration possibilities.

We aim at a single integrated support system for home care.
With these concerns, the possibilities offered by WebRTC
(see Section 4) are very attractive.

Figure 1: The itACiH infrastructure for home care.

The technique demanded from a security point of view in a
healthcare system for remote access by the medical person-
nel (VPN-tunnels with 2-factor authentication using hard
certificates on identity cards) is not practical to use for con-
necting patients and home-based equipment. The architec-
ture chosen is instead based on having servers outside the
hospital firewall, and connect out from inside the hospital,
and thus being in full control of if and when to connect
and what information to make available outside the firewall.
This is an architecture that is also preferred from a secu-
rity point of view by the hospital over potentially 1000s of
constantly open VPN tunnels. The very restricted policy of
which ports and protocols to open in the firewall, lead to the
conclusion that we need to communicate using TCP/IP over
port 80. With the communication software we are using, all
logical connections (supporting the need as outlined above)
are multiplexed over one such link. When adding support
for video in this set-up, we thus also want to multiplex the
video over this link. Network-wise, we assume that this link
is realized on a high-speed network - perhaps the comput-
ers involved are even physically in the same computer room.
The bandwidth should thus not be a problem here even if
there are several video-connections active at the same time.

The equipment in the other end, in the patient’s home, or in
the field carried by mobile nurses, are using a similar multi-
plexing setup, but must rely on much weaker infrastructure,
such as 3/4G mobile technology or slow up-links from the
patient’s home.

4. WEBRTC
WebRTC is a new standard being developed by W3C [4]
(browser API) and IETF 3 (wire protocol) to allow audio
and video conferencing capabilities without plugins in Web
browsers. This means that audio and video-streaming appli-
cations can be developed directly in Javascript and deployed
and run through a standard Web browser. This approach is
is very attractive for our scenario described in Section 3, be-
cause most devices today run a Web browser. Furthermore,
in certain restricted environments, such as a hospital, a Web
browser is the only end-user application that is allowed to
run.

The WebRTC API comprises two main parts. First, the
HTML5 GetUserMedia (GUM) API [5], is used to give the
Web page access to media from local audio and video cap-
turing devices. For video, the picture frames may, for in-
stance, be mapped to an HTML5 Canvas or Video element
for direct pixel-by-pixel access and display respectively. Sec-
ond, the PeerConnection API allows these video and audio
streams to be attached to a peer-to-peer audio and video-
conferencing session. The connection is established through
an Offer and Answer protocol, based on SDP negotiation,
that is transmitted over a signalling channel. This protocol
is defined in an IETF draft called Javascript Session Es-
tablishment Protocol (JSEP) [20]. It allows the Javascript
application to intercept and enhance the session parameters
being negotiated. This protocol is what allows our solution
to redirect the traffic through our gateway without having
to modify the browser. The fact that these APIs are being
standardized also means that the code we use to intercept
and modify the session establishment is generally applica-
ble across browsers in theory 4. One key part in the use
of JSEP for our scenario is that the signalling plane com-
munication is not specified, which means that the browser
just gives the application callbacks with payloads, e.g. SDP,
to send to the other peer. Conversely, when a WebRTC
payload is received at the other end it is fed into the We-
bRTC runtime by calling APIs on the PeerConnection API
after potentially having read and modified it. The only re-
quirement on this application-level channel is that it needs
to be real-time, and there needs to be a way for peers to
rendezvous. Hence, many applications use COMET [8] or
WebSockets [9] for this purpose.

However, for the data plane, the suite of WebRTC APIs as-
sume that the application does not intercept or modify the
communication. The UDP packets are sent on internal sock-
ets directly between the browser WebRTC runtimes. This is
the main issue we need to solve as the current PeerConnec-
tion API assumes that there is a direct connection between
the peers (that can be established through ICE [15]) . As
previously discussed, in most corporate networks including
hospital networks, it is not possible to establish such direct
connections to peers outside the local network.

The way to solve this particular issue of also redirecting the
data traffic is to intercept and rewrite the ICE endpoint

3http://tools.ietf.org/wg/rtcweb/
4as of this writing only Chrome and Firefox support the
latest WebRTC PeerConnection and JSEP APIs, and minor
differences in the Firefox implementation has forced us to
restrict testing of our solution to Chrome.



candidates sent using the JSEP protocol. We will discuss in
more detail how we accomplish this in Section 6.

An alternative solution could have been to plug in our tun-
nel behind a custom server supporting the TURN protocol
and use the standard JSEP exchange without modifications.
However, we opted not to pursue this approach at this point
since it would involve implementing the full TURN stack
and protocol, when we already have most of this function-
ality in our existing middleware, Palcom, which we describe
next.

5. PALCOM
The Palcom architecture [19] includes Palcom devices (or ap-
plications) which can communicate on a local network and
tunnels that connect Palcom devices over remote networks
and multiplex their communication over a single TCP/IP
port. Since every Palcom device can act as a router of Pal-
com discovery and application traffic, one such Tunnel is
enough for all Palcom devices on one side of the Tunnel to
connect to any of the Palcom devices on the other side of
the Tunnel (and vice versa). If Palcom Tunnels are estab-
lished from Palcom devices on local networks behind NAT
or Firewalls to the same Palcom device on a visible network
it appears to the Palcom devices as if they are on the same
local network when it comes to discovery and communica-
tion.

The Palcom tools include an application that serves as a
service container, and is exposed as an empty device, called
“theThing”. This application can dynamically load and ex-
ecute functionality in terms of Palcom Services. The func-
tionality we used in our WebRTC gateway is implemented as
such Palcom Services and deployed to instances of theThing
executing in local networks and a central location. The
Tunnels are provided by the instances of theThing and can
swiftly be configured to use whatever ports that might be
open. This architecture thus clearly separates the function-
ality that talks the WebRTC protocols (embedded in the
Palcom Services) from the functionality that provides the
NAT and Firewall traversal techniques. Tunnels used in
this work are built on TCP/IP in order to get through tight
firewalls, where one can expect that the only option is to
use port 80. UDP is in general much more efficient and
would be attractive to use in less restricted situations. In
this work all measurements has, however, been done using
TCP/IP based tunnels. An interesting alternative would
be to use TCP for the Hospital-Server link (typical over a
high-speed wired network) and using an UDP based tunnel
for the Patient-Server link (typical over wireless slow up-link
networks). The Palcom architecture would handle such a sit-
uation without change since the general communication and
routing mechanisms are independent of the network tech-
nology used. This is made possible because Palcom includes
a message transport protocol that can encapsulate data of
any application protocol (such as RTP and RTCP in this
work).

Palcom services are also readily accessible from a Web browser
thanks to a recently developed Web bridge [17], which makes
them a good fit for our WebRTC gateway implementation.

Next, we describe how we implement our WebRTC gateway

using Palcom, and the WebRTC APIs and protocols.

6. WEBRTC GATEWAY
Our solution comprises three services, a tunnel (TUN), a
local RTC (Real-Time Communication) gateway (LGAT)
and a central RTC gateway (CGAT). All control plane traffic
between the components go through a Web Server using a
publish and subscribe model implemented with long-polling
and exposed with a REST interface that can be accessed
through an API similar to HTML5 WebSockets 5.

The LGAT services are typically deployed within local net-
works behind firewalls and the CGAT service is deployed on
the public Internet. The TUN service, described in more
detail in the previous section, is responsible for multiplexing
the traffic that comes into it through a single well-known
port to another tunnel peer which would sit on a different
network such as the public Internet. One could imagine tun-
neling directly between the peer networks but that makes the
configurations more volatile and it may also be a security is-
sue to give access directly into services running in a remote
local network (such as a hospital or corporate network).

To simplify deployment we by default deploy a default CGAT
service so that only local gateway configurations need to
be set to establish a session. If the CGAT service detects
that both peers use the same LGAT no gateway redirection
will be performed and the standard WebRTC protocol will
be used. However, if the peers have two different LGATs
we set up and communicate through TUN in four initia-
tion phases: offer and answer exchange, candidate exchange,
STUN endpoint verification and finally SRTP (Secure Real-
Time Protocol) and SRTCP (Secure Real-Time Control Pro-
tocol) data traffic exchange. All of these phases are present
in the standard WebRTC browser-to-browser communica-
tion as well. Next we describe in more detail how we extend
each phase to create an efficient and secure WebRTC tunnel.

6.1 Phase I: Offer and Answer Exchange
WebRTC does not specify how peers rendezvous, or how
control messages between them are relayed. As previously
mentioned, we take the some approach as most existing ap-
plications of sending the messages through a WebSocket-like
pubsub service. In this first phase we do not make any mod-
ifications to the standard exchange protocol except to piggy
back gateway data in the messages. This phase comprises
the following steps (see Figure 2):

1. The WebRTC runtime in browser A generates an SDP
(Session Description Protocol) offer through JSEP con-
taining among other things user and password creden-
tials for the session.

2. We intercept the offer in a local Javascript library (yel-
low box) before it is broadcast to potential peers. The
signalling plane of WebRTC is not defined in the spec-
ification but could treat the JSEP protocol as a black
box, i.e. no knowledge of payload is necessary, you just
need to pass the data from the WebRTC runtime in

5as the standards and implementations of WebSockets ma-
ture we can replace our custom pubsub protocol with Web-
Sockets



browser A to browser B by some means. This makes it
easy for us to attach additional information to the sig-
nalling payload without the knowledge of the respec-
tive WebRTC runtimes while still being fully compliant
to the JSEP handshake protocol. The information we
add is simply the identity of the LGAT of browser A
(LGATA).

3. The enhanced offer is now passed through the CGAT
service (which keeps track of who is online in which
virtual Web conference room) and broadcast to every-
one listening on the pubsub channel where browser A
sent the offer.

4. Browser B receives the offer payload and we intercept
the SDP data before it reaches the WebRTC runtime.

5. We extract the credentials (ice-ufrag and ice-pwd) from
the offer SDP. These credentials are cached locally in
the Javascript runtime for later use.

6. Browser B will now generate an answer SDP to browser
A’s offer. We intercepts this answer too before sending
it off to browser B, and extract the answer credentials.
Now by combining these credentials with the creden-
tials extracted from the offer we have all the informa-
tion needed for our gateway to verify incoming connec-
tion requests and to sign outgoing connection requests
properly. In particular the following two pairs of user
name and passwords are constructed: {u1 : u2, p1}
and {u2 : u1, p2}, where ux is the ice-ufrag attribute
of user x and px is the ice-pwd attribute of user x. As
the answer reaches browser B the credentials will be
extracted similarly there.

7. The Answer from B is sent back through the Web
server.

8. It follows the reverse route through the CGAT back to
browser A.

9. The Answer is received by browser A and intercepted
again by our Javascript library.

10. The credentials are extracted from the Answer SDP
and cached locally in browser A.

This completes the first phase of our tunnel setup.

6.2 Phase II: Candidate Exchange
The following phase of candidate IP address and protocol
(TCP or UDP) exchange may start before the offer and an-
swer exchange has completed fully, so we need to account for
certain events in this phase sometimes happening before and
sometimes after events in the previous phase. Our general
solution to that problem is to cache away results needed for
an action and when we detect that we have complete infor-
mation from both peers we fire our event to proceed to the
next step. Most of the heavy lifting of our gateway setup
is done in this phase which proceeds in the following steps
(see Figure 3):

1. The WebRTC runtime in browser A generates a can-
didate IP address, port and protocol. If browser A

Figure 2: Phase I: Offer and Answer Exchange.

is on a local network it could send us a non-routable
IP, such as 192.168.0.10. This is no problem for our
gateway though since we assume that LGAT is on the
same local network as the browser, which is sufficient
to route traffic. We pass the (ice-)candidate without
any modifications to the Web server through the ses-
sion that was established in the previous phase.

2. Browser B receives the candidate sent by browser A.
Now we intercept the message before passing it on to
the local WebRTC runtime.

3. In the previous phase, browser B received the LGAT
of browser A. This LGAT reference together with the
IP, port and protocol information that was just re-
ceived are now sent to the Web server in an allocate
request targeted at the local LGAT service in container
B. Note that the browser can only communicate with
HTTP to the same domain as the Web page (unless we
use a JSONP hack) and can thus not send this mes-
sage directly to the local LGAT. Exposing this local
container through a JSONP cross domain HTTP API
could be a security vulnerability though, which is why
we can only communicate with the LGAT through the
CGAT. From a developer perspective it is also much
less complicated since we can just send the messages
through the same pubsub API as all other WebRTC
control messages.

4. The Allocate request goes through the CGAT, as the
web server may not be o the same network as the
LGAT services, which is the whole point of having our
tunnel.

5. The Allocate request is received by the local gateway.
An internal session is now established and we store the
remote LGAT in Container A, as well as the port,IP
and protocol (for now we only support UDP, but it
would be trivial to handle TCP as well) that was in
the candidate message generated by browser A. We
also allocate a new port on the local network and send
the port and IP as well as the session id back.



6. The allocate reply passes through the CGAT which
takes note of the session id in order to block unknown
sessions to be forwarded to the LGAT later on.

7. The allocate reply then reaches Browser B again, and
the allocated IP and port are extracted.

8. At this point when we know that a session has been
allocated in our local LGAT service, we can also store
the credentials we cached in the previous phase in the
LGAT service. Note that this request goes through
the CGAT as well for the same reasons as mentioned
above. Also note that the reason why this is a separate
request as opposed to being data just piggy-backed on
the allocate request is that the first and the second
phase overlap. This means that the credentials may
not be available at the time the allocate request is
called. Of course we could still piggy-back it if it is
available, but we, in either case, need to have a sepa-
rate operation to set the credentials out-of-band.

9. Now the original candidate request received in step 2
is modified to contain the just allocated IP and port
instead of the IP and port allocated by browser A.
Once that is done the modified candidate is sent to
the WebRTC runtime as if it was received directly from
browser A.

This is the first step in redirecting the WebRTC traffic to our
tunnel. However, it only results in the browser sending out
STUN verification requests to the IP and port we redirected
it too. In order to receive valid data traffic on that host and
port we need also respond to the STUN requests correctly,
which is the task of the next phase.

The parameter passing and operation sequence of the first
two phases are summarized in a UML sequence diagram in
Figure 4.

Figure 3: Phase II: Candidate Exchange.

6.3 Phase III: STUN Endpoint Verification
The final step before being able to send data traffic on our
tunnel is to verify our allocated IP and port with the Browser

Figure 4: Offer/Answer and Candidate Exchange
UML Sequence Diagram.

WebRTC runtimes. This phase can overlap with the previ-
ous two phases because the two peers run the phases con-
currently to each other. However, we are guaranteed that
it does not happen until we set the allocated IP and port
in the candidate rewrite step (step 9) in the previous phase
for the local browser. This means that we may not be ready
to fully answer the initial STUN requests as the browser
start generating them. There is a very sensitive balance be-
tween allocating the candidate too late and too early. The
browser gives up after sending too many unanswered STUN
requests. However, it may also give up if we do not pro-
vide any candidates soon enough. Another issue is that the
browser bombards the LGAT with STUN requests, so try-
ing to answer them all before the setup is complete can slow
down the gateway to the point that the final setup calls can
not be served. For this reason we can configure the LGAT
service to ignore a certain number of STUN requests before
attempting to answer them correctly. There is a default
value that works in most cases but for very CPU deprived
machines it may need to be modified.

The verification proceeds concurrently in both browsers in
the following steps (see Figure 5):

1. The browser sends a STUN BindingRequest to the al-
located IP and port using UDP. At this point we need
to determine if it is a STUN request very efficiently
since the actual data will pass through the same IP
and port using the same transport protocol (UDP).

2. Once we have determined that it is a valid STUN Bind-
ingRequest and we have the correct user credentials to
answer the request (and the number of STUN pack-
ets configured to drop have been dropped) we create
a STUN BindingResponse. The response contains the
integrity attribute, which means that it is signed with
the user credentials of the remote browser. Note that
the STUN requests are never passed through the tun-
nel, we have all the information needed to answer them
in the local LGAT, which is an optimization, as it saves
network traffic.

3. However, this also means that the local browser will



never receive any STUN Binding Requests, which is
also a requirement for the data traffic to commence.
Hence, we also compose a STUN BindingRequest at
the same time as the BindingResponse is composed.
Both the BindingResponse and the new BindingRe-
quest are then sent on the same browser IP and port
that the original BindingRequest came from.

In earlier versions of Chrome this was a Google specific
ICE protocol without message integrity checks and message
signatures. Hence, earlier versions of our services imple-
mented this proprietary protocol. Now since Chrome 24
both Chrome and our LGAT services will send STUN mes-
sages according to the standard ICE RFC 5245 protocol in-
cluding message integrity signatures. We are now ready to
route media streams, which is described in the next phase.

Figure 5: Phase III: STUN Endpoint Verification.

6.4 Phase IV: Data Traffic Routing
The routing of WebRTC media streams proceeds as follows
(see Figure 6):

1. Browser A sends the SRTP or SRTCP packets over
UDP to the IP and port we allocated for this session
in the previous phases.

2. The LGAT service then looks at the browser B LGAT
service associated with this session as well as the IP
and port of the browser B. This info is sent to the
CGAT service with the data packet. The reason that
it is not routed directly to the remote LGAT is that
they sit on different networks and we may not want
to give full connectivity of services across sessions to,
for instance, protect patient data in a hospital doctor
and patient exchange which was the use case that mo-
tivate us to build this tunnel. The WebRTC RTP pay-
loads are all encrypted so one only needs to make sure
that the SDP singalling plane is encrypted where the
credentials are included to secure the protocol. This
means that if someone else receives a data packet, e.g.
by sniffing our tunnel or RTC gateway traffic they can-
not do anything with it. We also have the option of en-
crypting our tunnel traffic, but in this case it is overkill.
To encrypt the signalling traffic we simply rely on

HTTPS which is supported by our Web socket imple-
mentation trivially since it only relies on the browser
XHR (XMLHttpRequest aka AJAX) API [17].

3. The central container does a quick session verification
to make sure that the browser B LGAT in fact expects
the packet before forwarding it.

4. When the data packet arrives at the remote LGAT it
can be directly forwarded without any further checks.
Optionally we can do a checksum since all that infor-
mation is available, but since the WebRTC traffic is so
sensitive to latency we avoid intercepting and process-
ing the actual data packets more than necessary. The
WebRTC browser runtimes drive the full SRTP and
SRTCP protocol, so there is no need to reinvent that
security either.

5. Finally, the data packets arrive at browser B, and will
show up in the browser UI.

Figure 6: Phase IV: Data Traffic Routing.

6.5 STUN Server
As a final note we now describe our ICE STUN server inside
the LGAT service in some more detail. As previously men-
tioned this service is responsible for both responding prop-
erly to STUN messages received by the browser runtime on
the local network as well as to generate STUN messages
to simulate the remote browser sending STUN messages to
the local network browser. Our ICE STUN implementation
uses the ICE4J library to compose and parse STUN mes-
sages. We also add an efficient way of checking whether the
message is a STUN binding request or a RTP/RTCP packet
by peaking into the assumed STUN header, so we do not
try to parse every incoming packet, as all the packets will
be sent on the same UDP IP address and port. Now if we
determine that the incoming packet is a STUN requests we
parse the Transaction ID and extract the IP and port of the
sender of the packet (the browser WebRTC runtime). The
IP address and port are now used to create a XOR mapped
address attribute in a binding success response. We also add
the integrity and finger print attributes according to RFC
5245. In order to properly create these attributes we need
to find a key to sign the message with. This key is obtained
from the password mapped to the ufrag derived username



attribute matching the STUN username attribute of the in-
coming stun binding request.

Now half of the work is done. In addition to replying to the
SUN binding request we also need to generate our own bind-
ing request to the local browser to mimic the remote browser
sending this request. This is done as follows. The username
of the incoming request is flipped so the part before ”:” is ap-
pears after and vice versa. Now the password of this flipped
user name is looked up to sign the integrity part of the re-
quest. Priority, Controlling and TieBreaker attributes are
populated either with default values or if they appear in the
incoming request they are simply copied over. We also add
an empty UseCandidate attribute because Chrome tends to
do that. Next, both the request and response are sent to the
appropriate UDP host and port of the local browser and we
are done. We note that the integrity checks are done with
short term credentials according to RFC5389 and RFC5245.
It is trivial to support long-term credentials in our gateway
too as it would just involve setting up the username and
password pairs from another source than the SDP answers
and offers. So only the Javascript application code would
need to be modified slightly.

7. EVALUATION
To evaluate our gateway we run experiments to measure the
latency impact for ongoing sessions,the overhead incurred
when initiating a session, and the scalability in terms of
concurrent streams.

7.1 Latency Evaluation
We leverage the WebRTC getStats statistics API on the
PeerConnection directly from Javascript in one of the par-
ticipating browsers 6 to extract stream performance values.
Sampling was done on a second-by-second basis, and aver-
ages were calculated each minute. We base our final metrics
on statistics from 7-minute long test sessions, where the first
two minutes are ignored as a warmup phase. Although we
extracted many more metrics, two key metrics that we base
our comparisons on are round-trip-time (RTT) 7 and Jit-
ter 8. We also looked at loss and frame rates, but could not
see any interesting differences between direct connections
and tunneled connections in those metrics.

Since our gateway can be deployed both as a personal gate-
way on the same host as the browser and as a shared gate-
way in an internal network, we evaluate the impact of local
(personal) and remote gateways. In the remote gateway ex-
periment we let the remote gateway run on the same host as
the remote peer. Hence we only add network traffic in this
setup while keeping the processing power the same.

To further study the impact under different network settings
we run experiments using both wireless (WiFi) and a wired
(Ethernet) access to the same network.

During our experimentation we also found that the perfor-
mance of the peer machines make a big difference in terms

6Google Chrome Version 30
7googRtt in stats type ssrc
8googJitterReceived in stats type ssrc

(a) RTT (b) Jitter

Figure 7: Local and remote gateway performance
compared to direct streaming with the fast laptop
on the wired network.

(a) RTT (b) Jitter

Figure 8: Local and remote gateway performance
compared to direct streaming with the fast laptop
on the wireless network.

of the latency results. We therefore also compare our re-
sults with experiments done where one laptop was replaced
with a slower laptop. Both The faster and the slower laptop
run Windows 7 and have a 1.6-1.7GHz CPU. The Windows
Experience Index for the slower laptop is 3.2 9 and for the
faster laptop 5.6 10.

The RTT and jitter results for the fast laptop running on
the wired network with local and remote gateways is shown
in Figure 7. The direct value denotes the performance of a
stream that follows the default browser behavior and com-
municates directly between browsers.

The RTT and jitter results for the fast laptop running on the
wireless network with local and remote gateways is shown
in Figure 8.

The RTT and jitter results for the slow laptop 11 running on
the wired network with local and remote gateways is shown
in Figure 9.

Table 1 summarizes the absolute values for the RTT and
jitter metrics across the experiments.

As expected, the round trip times suffer quite a bit, but

93.2 calculations per second, 5.6 memory operations per sec-
ond, and a graphics score of 4.3

105.6 calculations per second, 5.9 memory operations per sec-
ond, and a graphics score of 5.6

11Note that we only replaced one of the peers compared to
the fast laptop experiments and kept one peer (a desktop)
the same.



Table 1: Summary of experiment values.
laptop network rtt jitter

local gateway remote gateway direct local gateway remote gateway direct
slow wired 47 55 15 11 55 5
fast wired 36 32 3 8 32 1
fast wireless 48 94 25 12 94 7

(a) RTT (b) Jitter

Figure 9: Local and remote gateway performance
compared to direct streaming with the slow laptop
on the wired network.

given that the alternative in many cases is no stream at
all, the slight lag may be acceptable. The frame rates are
very stable and there is virtually no loss and only a modest
increase in jitter.

For the slow laptop the local gateway does not perform so
well since the machine gets overloaded. Note that the remote
gateway runs on the other peer’s machine so the overall ex-
periment load is the same. For the fast laptop running a
local gateway is better, though, since it avoids extra cross
host traffic.

7.2 Session Initiation Overhead
We now study the impact on the video and audio session
initiation time. The overhead incurred is due to the extra
redirections and remote allocations executed as described for
the four phases (I, II, III, IV) in Section 6. We measure both
the time from the user clicking on a button to initiate the
call to the time when the Offer/Answer Exchange is done
(roughly the completion of Phase I), and to the time when
the first media packet was both sent and received. The latter
part is where the bulk of the overhead is and from a user
experience perspective it shows up as the video element on
the web page being black before it starts showing a stream.
The first initiation time is easy to measure from callbacks
but the second one is a bit trickier since we do not have
full access to the UDP packets inside the browser. Thus, we
again rely on the PeerConnection getStats API to determine
when data packets have both been sent and received 12. The
results for the local and remote gateway settings using the
fast laptop and wired network setup can be seen in Figure 10.

We can see that stream setup time is not effected by our
gateway, but media setup incurs 2-5 seconds of overhead
compared to a direct connection for local and remote gate-
ways respectively.

12packetsSent and packetsReceived in the ssrc stats type

Figure 10: Connection time measured as Phase I
completion time (Stream Setup) and Phase IV start
time (Media Setup).

7.3 Scalability
We have designed the gateway to be shared among clients on
the same local network. Two requirements result from that.
First, the gateway should be easy to reuse between clients,
and second it should handle concurrent streams without too
much overhead. Since the second requirement relies on the
first we only focus on showing the evaluating the second here.
Based on our design the first requirement is also trivially
met, as we create separate leased tunnels (essentially ports)
for each session.

To evaluate the overhead of running multiple concurrent
streams in the same LGAT and CGAT services we set up
an experiment involving four machines, the desktop, and
the fast and slow laptop from the previous experiment and
another new laptop. In the direct connection baseline exper-
iment we let the fast and slow laptops communicate peer-
to-peer at the same time as the desktop and the new laptop
communicate peer-to-peer. We chose this setup since the
new laptop is slower than both the slow and the fast lap-
tops and the desktop is the fastest thus keeping the average
performance of the two endpoints roughly the same in the
two sessions. Now to evaluate concurrent stream overhead
in a single gateway we let the new laptop use the fast lap-
top’s gateway (LGAT), and the slow laptop use the desktop’s
gateway (LGAT). The desktop and the fast laptop both use
their own local gateways (LGAT). We note that this leads
to both streams sharing both LGATs and also the same sin-
gle CGAT. We now start both sessions, and let them run
concurrently for about 7 minutes to extract our benchmark
latency values from the desktop peer and its session with
the new laptop. Note, that we only use the session between
the fast and slow laptop as overhead and do not measure it
directly. After the 7 minutes have passed we stop the ses-
sion between the old and new laptops and observe how the



(a) RTT (b) Jitter

Figure 11: Latency in the concurrent and single
stream setups compared to direct link sessions in-
volving three laptops and a desktop on the same
wired network.

performance instantly picks up for the other session that we
keep alive. The results keen be seen in Figure 11.

We note that there is a 20ms drop in RTT when the con-
current stream stops. Given that the absolute performance
of a single stream is also about 20ms we can extrapolate the
potential number of streams our gateway can handle given
a RTT requirement. As a rule of thumb at about 200ms
RTT the session starts feeling like it is lagging. This means
that our gateway could handle up to 10 concurrent sessions
assuming no other contentions occur. Given that it is easy
to load balance both between LGAT and CGAT services we
believe this to be a reasonable overhead. Note also that an
LGAT/CGAT can be shared among a much high number of
users, since all users would not use the gateway at the same
time.

8. CONCLUSIONS
We have presented a solution for tunneling WebRTC data
plane traffic efficiently with minimal setup through restricted
networks having strict firewall policies.

Our solution relies on intercepting key parts of the WebRTC
JSEP session establishment protocol and using local net-
work gateways that can multiplex traffic from multiple con-
current streams efficiently without “leaking” any WebRTC
traffic across the firewall except through a trusted port such
as port 80.

The advantage of our solution compared to existing work is
that the traffic is relayed and all the dynamic port allocation
is done on the local network, while still allowing the traffic to
be re-routed to arbitrary networks. It would even be trivial
to load balance our traffic on the fly by simply relaying the
packets through a different central gateway. None of the
communicating browsers would have to know. Given the
use of SRTP encryption of the payloads there is no risk of
eavesdropping middlemen.

We have shown that the latency impact of our gateway is
acceptable to the user experience up to about 10 concur-
rent streams going through the same gateway (given a per-
stream RTT overhead of about 20ms). The WebRTC run-
time in the browser is quite CPU intensive in general, so
the browser that runs the end-user application needs to be
powerful enough to be able to avoid additional latency. Our

gateway can be run on a local device collocated with the
browser to minimize network traffic, but the CPU impact of
this setup is significant. So it needs to be a powerful ma-
chine to avoid latency. This performance impact and the
additional configuration effort is the reason why we recom-
mend deploying dedicated machines on the local network to
run our gateways. They may easily be replicated and load-
balanced. Providing automated gateway selection, local and
central, could improve the scalability significantly, but was
out of scope for the work presented here.

Our experiments also showed that the additional session es-
tablishment overhead is acceptable, in the order of 1-5 sec-
onds. Here, there is a small advantage to having a local host
gateway.

Future work includes testing our gateway with more browsers
as the WebRTC PeerConnection API is being supported by
more vendors, and investigating the feasibility of hiding our
implementation behind the TURN protocol to avoid custom
Javascript code to redirect the traffic during the JSEP hand-
shake. Embedding an additional Javascript library does not
have much impact on the application, though, since appli-
cations would need to embed a custom WebRTC library in
any case as the signalling plane implementation is applica-
tion specific.

We are also continuing work on deploying this solution in
our home-care project at hospitals and with patients.

Acknowledgement
This work was supported by the Swedish research fund VIN-
NOVA in the program Challenge Driven Innovation under
contract 2011-02796.

9. REFERENCES
[1] A. Alonso, P. Rodriguez, J. Salvachua, and J. Cerviño.

Deploying a multipoint control unit in the cloud:
Opportunities and challenges. In CLOUD
COMPUTING 2013, The Fourth International
Conference on Cloud Computing, GRIDs, and
Virtualization, pages 173–178, 2013.

[2] A. Amirante, T. Castaldi, L. Miniero, and S. P.
Romano. On the seamless interaction between webrtc
browsers and sip-based conferencing systems.
Communications Magazine, IEEE, 51(4):42–47, 2013.

[3] M. Baugher, D. McGrew, M. Naslund, E. Carrara,
and K. Norrman. The Secure Real-time Transport
Protocol (SRTP). RFC 3711 (Proposed Standard),
Mar. 2004. Updated by RFCs 5506, 6904.

[4] A. Bergkvist, D. Burnett, C. Jennings, and
A. Arayanan. Webrtc 1.0: Real-time communication
between browsers. Working draft, W3C, Aug. 2012.
http://www.w3.org/TR/webrtc/.

[5] D. Burnett, A. Bergkvist, C. Jennings, and
A. Narayanan. Media capture and streams.
http://dev.w3.org/2011/webrtc/editor/getusermedia.html.

[6] S. Chatterjee, B. Tulu, T. Abhichandani, and H. Li.
Sip-based enterprise converged networks for
voice/video-over-ip: implementation and evaluation of
components. Selected Areas in Communications, IEEE
Journal on, 23(10):1921–1933, 2005.



[7] Cisco. Traversing firewalls and nats with voice and
video over ip.
http://www.cisco.com/en/US/docs/telepresence
/endpoint/mxp-series/white papers/
white paper traversing firewalls and nats.pdf.

[8] D. Crane and P. McCarthy. Comet and Reverse Ajax:
The Next-Generation Ajax 2.0. Apress, Berkely, CA,
USA, 2008.

[9] I. Fette and A. Melnikov. The WebSocket Protocol.
RFC 6455 (Proposed Standard), Dec. 2011.

[10] M. Handley and V. Jacobson. SDP: Session
Description Protocol. RFC 2327 (Proposed Standard),
Apr. 1998. Obsoleted by RFC 4566, updated by RFC
3266.

[11] itACiH. It-stöd för avancerad cancerv̊ard i hemmet.
http://itacih.cs.lth.se/itACiH/itACiH.html.

[12] J. Lazzaro. Framing Real-time Transport Protocol
(RTP) and RTP Control Protocol (RTCP) Packets
over Connection-Oriented Transport. RFC 4571
(Proposed Standard), July 2006.

[13] S. Loreto and S. P. Romano. Real-time
communications in the web: Issues, achievements, and
ongoing standardization efforts. Internet Computing,
IEEE, 16(5):68–73, 2012.

[14] R. Mahy, P. Matthews, and J. Rosenberg. Traversal
using relays around nat (turn): Relay extensions to
session traversal utilities for nat (stun). Internet rfc
5766, IETF, Apr. 2010.
http://tools.ietf.org/html/rfc5766.

[15] J. Rosenberg. Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator
(NAT) Traversal for Offer/Answer Protocols. RFC
5245 (Proposed Standard), Apr. 2010. Updated by
RFC 6336.

[16] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing.
Session traversal utilities for nat (stun). Internet rfc
5389, IETF, Oct. 2008.
http://tools.ietf.org/html/rfc5389.

[17] T. Sandholm, B. Magnusson, and B. A. Johnsson. The
Palcom Device Web Bridge. Technical report,
Department of Computer Science, Lund University,
2012.
http://lup.lub.lu.se/record/3954411/file/3954413.pdf.

[18] M. Stukas and D. C. Sicker. An evaluation of voip
traversal of firewalls and nats within an enterprise
environment. Information Systems Frontiers,
6(3):219–228, 2004.

[19] D. Svensson Fors, B. Magnusson,
S. Gesteg̊ard Robertz, G. Hedin, and
E. Nilsson-Nyman. Ad-hoc composition of pervasive
services in the palcom architecture. In Proceedings of
the 2009 international conference on Pervasive
services, ICPS ’09, pages 83–92, New York, NY, USA,
2009. ACM.

[20] J. Uberti and C. Jennings. Javascript session
establishment protocol.
http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-00.

[21] vLine. Tunneling webrtc over tcp (and why it
matters).
http://blog.vline.com/post/52644825765/tunneling-
webrtc-over-tcp-and-why-it-matters.


